%0 Journal Article
%T 一类带变换罚函数的正则化问题的强度量次正则研究
Study on the Strong Metric Subregularity for a Class of Regularization Problems with Transformed Penalty Function
%A 周金玉
%A 李明华
%J Pure Mathematics
%P 293-306
%@ 2160-7605
%D 2024
%I Hans Publishing
%R 10.12677/pm.2024.145186
%X 本文研究一类带变换?1罚函数的正则化问题,该模型的目标函数由损失函数和变换?1罚函数两部分组成,其中损失函数是二次可微函数,变换?1罚函数是一个非凸函数。本文首先研究变换?1罚函数的邻近次微分和极限次微分,然后利用变换?1罚函数的次微分表达式和集值映射的图像导数工具得到了该类问题目标函数的次微分的图像导数,最后利用该图像导数表达式分别建立了该正则化问题的强度量次正则的一个充分条件和充要条件。
This paper studies the regularization problem for a class of penalty functions with transformed?1. The objective function of the model consists of two parts: the loss function and the transformed?1penalty function, where the loss function is a quadratic differentiable function and the transformed?1penalty function is a nonconvex function. This article first studies the proximal subdifferentials and limiting subdifferentials of the transformed?1penalty function. Then, by the subdifferential expression of the transformed?1penalty function and graphical derivative tool for set-value mapping, we obtain the graphical derivative of the subdifferentials of the objective function. Finally, using the graphical derivative expression, we establish a sufficient condition, a necessary and sufficient condition of the strong metric subregularity for the regularization problem.
%K 变换罚函数,邻近(极限)次微分,图像导数,强度量次正则
Transformed Penalty Function
%K Proximal (Limiting) Subdifferentials
%K Graphical Derivative
%K Strong Metric Subregularity
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=87753