%0 Journal Article %T The Maximum and Minimum Value of Exponential Randi&#263; Indices of Quasi-Tree Graph %A Lei Qiu %A Xijie Ruan %A Yan Zhu %J Journal of Applied Mathematics and Physics %P 1804-1818 %@ 2327-4379 %D 2024 %I Scientific Research Publishing %R 10.4236/jamp.2024.125112 %X The exponential Randi&#263; index has important applications in the fields of biology and chemistry. The exponential Randi&#263; index of a graph <i>G</i> is defined as the sum of the weights <math display='inline' xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <msup> <mi>e</mi> <mrow> <mstyle scriptlevel=' 1'> <mfrac> <mn>1</mn> <mrow> <msqrt> <mrow> <mi>d</mi><mrow><mo>(</mo> <mi>u</mi> <mo>)</mo></mrow><mi>d</mi><mrow><mo>(</mo> <mi>v</mi> <mo>)</mo></mrow></mrow> </msqrt> </mrow> </mfrac> </mstyle> </mrow> </msup> </mrow> </math> of all edges <i>uv</i> of <i>G</i>, where <math display='inline' xmlns='http://www.w3.org/1998/Math/MathML'> <mrow> <mi>d</mi><mrow><mo>(</mo> <mi>u</mi> <mo>)</mo></mrow></mrow> </math> denotes the degree of a vertex <i>u</i> in <i>G</i>. The paper mainly provides the upper and lower bounds of the exponential Randi&#263; index in quasi-tree graphs, and characterizes the extremal graphs when the bounds are achieved. %K Exponential Randi& %K #263 %K Index %K Quasi-Tree Graph %K Extremal Value %K Extremal Graphs %U http://www.scirp.org/journal/PaperInformation.aspx?PaperID=133367