%0 Journal Article %T k次Petersen连通圈网络
k Times Petersen Connected Cycles Networks %A 李倩雅 %A 张治成 %A 佟永鹏 %J Advances in Applied Mathematics %P 2045-2052 %@ 2324-8009 %D 2024 %I Hans Publishing %R 10.12677/aam.2024.135191 %X 互连网络是超级计算机体系结构的重要组成部分。文中利用正则图连通圈网络模型,设计出了新模型k次Petersen连通圈网络PGCC(k),它是3正则3连通的,且具有其他好的性质。本文对它的圈因子分解、Hamilton性和一些基本性质进行了研究,并证明了PGCC(1)可分解为边不交的两个等长圈和一个完美对集的并。
Interconnected networks are an important part of supercomputer architecture. In the paper, using the regular graph connected circle network model, a new model kth Peterson connected circle network PGCC(k), which is 3-regular 3-connected and has many good properties, is designed. In this paper, we study its circle factorization, Hamiltonianity and some basic properties, and prove that PGCC(1) can be decomposed into two equal circles with non-intersecting edges and a perfect pairwise set of merges. %K 互连网络,Hamilton图,完美对集,圈因子,PGCC(k)
Interconnection Network %K Hamilton Graph %K Perfect Pairwise Set %K Cycle Factor %K PGCC(k) %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=87340