%0 Journal Article
%T 一类可压缩超弹性材料的圆柱空穴现象的定性分析
Qualitative Analysis of Cylindrical Cavitation in a Class of Compressible Hyperelastic Materials
%A 魏凤伦
%A 侯磊
%J Pure Mathematics
%P 163-171
%@ 2160-7605
%D 2024
%I Hans Publishing
%R 10.12677/pm.2024.145173
%X 本文主要研究了一类可压缩超弹性材料的实心圆柱体的径向有限变形问题,通过理论解和数值模拟,我们得到了一些有趣的结论。存在一个临界拉伸值,当径向拉伸小于临界值时,圆柱体保持为实心圆柱体,当径向拉伸大于临界值时,圆柱体轴线上会形成圆柱空穴。应力集中和突变现象进一步表明,可压缩超弹性圆柱体中的空穴现象符合实际的物理背景。
In this paper, the finite radial deformation of a solid cylinder made of a class of compressible hyperelastic materials is studied. Through theoretical solutions and numerical simulations, we obtain some interesting conclusions. However, there is a critical stretching value. When the radial stretching is less than the critical value, the cylinder remains a solid cylinder. When the radial stretching is greater than the critical value, a cylindrical cavity will form on the axis of the cylinder. Furthermore, the stress concentration and abrupt change phenomenon shows that the cavity phenomenon in the compressible hyperelastic cylinder is in line with the actual physical background.
%K 可压缩超弹性材料,径向对称变形,应力集中和突变,圆柱空穴
Compressible Hyperelastic Material
%K Radial Symmetric Deformation
%K Stress Concentration and Abrupt Change
%K Cylindrical Cavity
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=87319