%0 Journal Article %T Tree of Fermat-Pramanik Series and Solution of <i>A<sup>M</sup> </i>+<i>B</i><sup>2</sup> =<i>C</i><sup>2</sup> with Integers Produces a New Series of (<i>C</i><sub>1</sub><sup>2</sup>- <i>B</i><sub>1</sub><sup>2</sup>)=(<i>C</i><sub>2</sub><sup>2</sup>- <i>B</i><sub>2</sub><sup>2</sup>)=(<i>C</i><sub>3</sub><sup>2</sup>- <i>B</i><sub>3</sub><sup>2</sup>)=Others %A Panchanan Pramanik %A Susmita Pramanik %A Sabyasachi Sen %J Advances in Pure Mathematics %P 160-166 %@ 2160-0384 %D 2024 %I Scientific Research Publishing %R 10.4236/apm.2024.143008 %X
The Fermat¨CPramanik series are like below:
.The mathematical principle has been established by factorization principle. The Fermat-Pramanik tree can be grown. It produces branched Fermat-Pramanik series using same principle making Fermat-Pramanik chain. Branched chain can be propagated at any point of the main chain with indefinite length using factorization principle as follows:
Same principle is applicable for integer solutions of AM+B2=C2which produces series of the type . It has been shown that this equation is solvable with N{A, B, C, M}.
where
,
, M=M1+M2 and M1>M2. Subsequently, it has been shown that
using M= M1+M2+M3+... The combinations of Ms should be taken so that the values of both the parts (Cn+Bn) and (Cn-Bn) should be even or odd for obtaining Z{B,C}. Hence, it has been shown that the Fermat triple can generate a) Fermat-Pramanik multiplate, b) Fermat-Pramanik Branched multiplate and c) Fermat-Pramanik deductive series. All these formalisms are useful for development of new principle of
%K Fermat Theorem
%K Fermat-Pramanik Tree
%K Solution of <
%K i>
%K A<
%K sup>
%K M<
%K /sup>
%K <
%K /i>
%K +<
%K i>
%K B<
%K /i>
%K <
%K sup>
%K 2<
%K /sup>
%K =<
%K i>
%K C<
%K /i>
%K <
%K sup>
%K 2<
%K /sup>
%K
%K Deductive Series
%K Generation of FermatˇŻs Triode
%K Generation of Fermat Series
%U http://www.scirp.org/journal/PaperInformation.aspx?PaperID=131887