%0 Journal Article
%T 区间图Total-罗马控制性质研究
Total-Roman Domination Property on Interval Graphs
%A 周星利
%A 刘童
%A 李鹏
%J Pure Mathematics
%P 3505-3513
%@ 2160-7605
%D 2023
%I Hans Publishing
%R 10.12677/PM.2023.1312365
%X Total-罗马控制函数是函数f:V(G)→{0,1,2},满足条件:1) 对G中任意函数值f(u)=0的顶点u,至少存在一个邻居v使得函数值f(v)=2;2) 由控制集{k|f(k)≥1且k∈V(G)}诱导的子图没有孤立点存在。结合3阶及以上区间图,本文主要探索了基于total-罗马对的定理,研究了团和路径的不同结合图类中total-罗马控制数等内容,以示例辅助理解,证明了任意阶团的total-罗马控制数为3、相交团的并的total-罗马控制数不超过4等性质。
Total-Roman Domination Function is the function f:V(G)→{0,1,2}, which satisfies the following two conditions: 1) for any vertex u with f(u)=0, there is at least one neighbor v with f(v)=2;2) No outliers exist for a subgraph induced by a control set {k|f(k)≥1 and k∈V(G)}. Combined with interval graphs of order 3 and above, this paper mainly explores the Total-Roman control number based on the theorem of Total-Roman pairs, studies the Total-Roman control number of different associative graph classes of groups and paths, and proves that the total-Roman control number of any order group is 3, and the Total-Roman control number of union of intersecting groups is not more than 4 and other properties.
%K 区间图,Total-罗马控制函数,团,路径
Interval Graph
%K Total-Roman Domination Function
%K Clique
%K Path
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=77994