%0 Journal Article
%T Tempered分数阶微分方程Nagumo型唯一解
Nagumo-Type Uniqueness Result for Tempered Fractional Differential Equations
%A 黄洪鸿
%J Pure Mathematics
%P 3254-3261
%@ 2160-7605
%D 2023
%I Hans Publishing
%R 10.12677/PM.2023.1311339
%X 本文重点讨论Tempered分数阶微分方程柯西问题Nagumo迭代近似值的唯一性和收敛性。首先把柯西问题转化成等价Volterra积分方程,证出解的唯一性。然后,运用迭代方法,我们将Nagumo型唯一性和迭代近似值序列扩展到Tempered分数阶微分方程。
This work is concerned with Nagumo-type uniqueness and convergence of successive approxima-tions to Cauchy problem for Tempered fractional differential equations. Firstly, to prove the uniqueness of the solution, the Cauchy problem is transformed into an equivalent Volterra integral equation. Then, using the iterative method, we extend Nagumo-type uniqueness and convergence of successive approximations to Tempered fractional differential equations.
%K Tempered分数阶算子,Nagumo型唯一性,迭代法
Tempered Fractional Operators
%K Nagumo-Type Uniqueness
%K Iterative Approach
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=76234