%0 Journal Article %T 直径为3且有割边的已约简图
Reduced Graphs of Diameter Three and Having Cut Edges %A 冶福龙 %A 秦晓晓 %J Pure Mathematics %P 3193-3197 %@ 2160-7605 %D 2023 %I Hans Publishing %R 10.12677/PM.2023.1311331 %X 若图H = (V(H),E(H)) 的任意一个偶子集 R?V(H),H 有一个生成连通子图HR,使得O(HR) = S,则H 是可折叠的,Catlin 证明任意图 G 都有唯一的两两点不交的极大可折叠子图的集合。G 的约简记为 G\",是将 G 中的每一个极大可折叠子图收缩成一个点后得到的图,若G = G\",则 G 是已约简的。在本文中主要刻画直径为3 且有割边的已约简图。若割边是非平凡的,则 G?S\"n,m; 否则,除 1 度点外其余点都在一个导出i-圈,i ∈{4,5}。
A graph H = (V(H),E(H)) is collapsible if for every subset R?V(H) with |R| even, H has a spanning connected sungraph HR such that O(HR) = R. Catlin showed that every graph G has unique collection of pairwise vertex-disjoint maximal collapsible subgraphs. The reduction of G, denoted by G\", is the graph obtained from G by contracting each maximal collapsible subgraphs into a single vertex. A graph G is reduced if G = G\". In this article, we characterize the reduced graphs of diameter three and having cut edges. If the cute edge is nontrival, then G?S\"n,m, otherwise, all vertices in an induced i-cycle, except 1 degree vertices, i ∈{4,5}. %K 直径,可折叠图,已约简图
Diameter %K Collapsible Graph %K Reduced Graph %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=75627