%0 Journal Article %T 一类特殊链环的Kauffman多项式
The Kauffman Polynomials of a Special Class of Links %A 徐芷微 %J Advances in Applied Mathematics %P 4153-4165 %@ 2324-8009 %D 2023 %I Hans Publishing %R 10.12677/AAM.2023.12100407 %X Kauffman多项式在纽结理论中占据一定地位,是纽结和链环中最有用的双变量Laurent多项式不变量之一,其已经成为量子拓扑的基本构建块。本文主要研究一类特殊不定向链环——复叠链环,研究了这类链环的Kauffman多项式以及Kauffman多项式对应的生成函数。借助直线型链环的Kauffman多项式对复叠链环的Kauffman多项式进行计算,这为研究定向复叠链环的Kauffman多项式以及BLM/Ho多项式奠定基础。
The Kauffman polynomial is probably the most useful two-variable polynomial invariants of knots and links. It generalizes the Jones polynomial, and it has become basic building blocks of quantum topology. In this paper, we mainly study a special type of links—the covering links, and we study the Kauffman polynomials of the link and the corresponding generating functions. The Kauffman poly-nomials of the covering links is calculated by using the Kauffman polynomials of linear links, which lays a foundation for the study of Kauffman polynomials and BLM/Ho polynomials of the oriented covering links. %K Kauffman多项式,递归关系式,生成函数
Kauffman Polynomial %K Recurrence Relation %K Generating Function %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=73483