%0 Journal Article %T 一种自适应选取步长的随机交替方向乘子法
A Stochastic Alternating Direction Multiplier Method with Adaptive Step Selection %A 李静 %A 薛丹 %J Advances in Applied Mathematics %P 4090-4104 %@ 2324-8009 %D 2023 %I Hans Publishing %R 10.12677/AAM.2023.129401 %X 本文研究了具有可分离变量的凸随机优化问题,提出了一种新的随机交替方向乘子(ADMM)算法。该算法是ADMM与自适应选取步长的随机缩减梯度算法(SVRG-BB)的结合,利用BB步长实现了SVRG-ADMM方法自适应选取步长,而无需再使用递减步长或者手动调节步长。在一般的假设条件下,证明了算法的收敛性。 最后给出相关数值实验表明了算法的有效性。
This paper considers the problem of convex stochastic optimization with separable variables. We propose a stochastic alternating direction method of multipliers (AD- MM) algorithm to solve this convex stochastic optimization problem. The algorithm can be roughly regarded as a combination of ADMM and adaptive step stochastic reduced gradient algorithm (SVRG-BB). BB step size is used to realize the adaptive step size selection by SVRG-ADMM method, without decreasing step size or manu- ally adjusting step size. Under general assumptions, the convergence of the algorithm is proved. Finally, numerical experiments are given to show the effectiveness of the algorithm. %K 随机优化,交替方向乘子法,机器学习
Stochastic Optimization %K Alternating Direction Method of Multipliers %K Machine Learning %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=72629