%0 Journal Article
%T 带线性自排斥漂移项的分数O-U过程的统计推断
Statistical Inference on the Fractional Ornstein-Uhlenbeck Process with the Linear Self-Repelling Drift
%A 杨晴
%A 闫理坦
%J Advances in Applied Mathematics
%P 2235-2254
%@ 2324-8009
%D 2023
%I Hans Publishing
%R 10.12677/AAM.2023.125229
%X 本文旨在利用最小二乘法研究带线性自排斥漂移项的分数O-U过程的统计推断。 假设BH=
是Hurst 指数为
的分数布朗运动,我们考虑下列方程,
其中,
, θ < 0 和σ, ν ∈ R 是三个参数。 这个过程是自吸引扩散的模拟(见Cranston and Le Jan, Math. Ann. 303 (1995), 87-93),我们主要的目标是研究其参数的最小二乘估计。
This dissertation aim is to study statistical inference on the fractional Ornstein- Uhlenbeck process with the linear self-attracting drift by least squares estimation. Let BH=
be a fractional Brownian motion with Hurst index
. We consider the following equation
, with
, where θ < 0 and σ, ν ∈ R are three parameters. The process is an analogue of the self-attracting diffusion (Cranston and Le Jan, Math. Ann. 303 (1995), 87-93). Our main aim is to study the least squares estimations of its parameters.
%K 分数布朗运动,自排斥扩散,最小二乘估计
Fractional Brownian Motion
%K Self-Repelling Diffusions
%K Least Squares Estimation
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=65781