%0 Journal Article
%T 广义(ω)性质
The Generalized Property (ω)
%A 郑宇洁
%A 刘爱芳
%J Advances in Applied Mathematics
%P 2152-2158
%@ 2324-8009
%D 2023
%I Hans Publishing
%R 10.12677/AAM.2023.125219
%X Weyl定理作为算子谱理论的重要研究内容,被广泛应用在代数几何,线性空间理论,拓扑学等不同的数学分支中,有很大的应用和理论价值。本文基于已有的理论知识,研究Weyl定理的变化,结合广义Kato型算子定义的谱集ρgk(T),给出Hilbert空间上有界线性算子满足广义(ω)性质的判定条件。
As an important research content of operator spectrum theory, Weyl theorem is widely used in al-gebraic geometry, linear space theory, topology and other different branches of mathematics, and has great application and theoretical value. In this paper, based on the existing theoretical knowledge, we study the variation of Weyl theorem, combine with the spectrum set ρgk(T) defined by the generalized Kato type operators, and give the judgment conditions for the bounded opera-tors on Hilbert space to satisfy the generalized properties (ω).
%K CI算子,广义(ω)性质,广义Kato型算子
CI Operator
%K Generalized Property (ω)
%K Generalized Kato Type Operators
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=65364