%0 Journal Article
%T 几类重图的阶为4的图对分解
Multidecompositions of Several Multigraphs for Graph-Pair of Order 4
%A 赵依凡
%A 杨卫华
%J Advances in Applied Mathematics
%P 1964-1970
%@ 2324-8009
%D 2023
%I Hans Publishing
%R 10.12677/AAM.2023.124201
%X 对于某个整数t ≥ 4,如果G和H是Kt的两个边不交的、非同构的、无孤立点的生成子图且满足E(G)∪E(H)=E(Kt),那么称(G,H)是阶为t的图对。Abueida和Daven得到了Pm,Pn,Pm,Cn,Pm,Kn,Cm,Cn,Cm,Kn,Km,Kn的阶为4的图对分解存在的充要条件。作为其结果的推广,本文给出λ(Pm,Pn),λ(Pm,Cn),λ(Pm,Kn),λ(Cm,Cn),λ(Cm,Kn),λ(Km,Kn),λL(Kn)的阶为4的图对分解存在的充要条件。
For some integer t ≥ 4, if G and H are edge disjoint, non-isomorphic and non-isolated vertices span-ning subgraphs of Kt such that E(G)∪E(H)=E(Kt) , then we say that is a graph-pair of order t. Abueida and Daven have introduced the necessary and sufficient conditions of the exist-ence of multidecompositions of Pm,Pn,Pm,Cn,Pm,Kn,Cm,Cn,Cm,Kn,Km,Kn for graph- pair of order 4. As a generalization, we obtain the necessary and sufficient conditions of the exist-ence of multidecompositions of λ(Pm,Pn),λ(Pm,Cn),λ(Pm,Kn),λ(Cm,Cn),λ(Cm,Kn),λ(Km,Kn),λL(Kn) for graph-pair of order 4.
%K 分解,图对,重图
Multidecompositon
%K Graph-Pair
%K Multigraph
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=64863