%0 Journal Article %T 几类重图的阶为4的图对分解
Multidecompositions of Several Multigraphs for Graph-Pair of Order 4 %A 赵依凡 %A 杨卫华 %J Advances in Applied Mathematics %P 1964-1970 %@ 2324-8009 %D 2023 %I Hans Publishing %R 10.12677/AAM.2023.124201 %X 对于某个整数t ≥ 4,如果G和H是Kt的两个边不交的、非同构的、无孤立点的生成子图且满足E(G)∪E(H)=E(Kt),那么称(G,H)是阶为t的图对。Abueida和Daven得到了Pm,Pn,Pm,Cn,Pm,Kn,Cm,Cn,Cm,Kn,Km,Kn的阶为4的图对分解存在的充要条件。作为其结果的推广,本文给出λ(Pm,Pn),λ(Pm,Cn),λ(Pm,Kn),λ(Cm,Cn),λ(Cm,Kn),λ(Km,Kn),λL(Kn)的阶为4的图对分解存在的充要条件。
For some integer t ≥ 4, if G and H are edge disjoint, non-isomorphic and non-isolated vertices span-ning subgraphs of Kt such that E(G)∪E(H)=E(Kt) , then we say that is a graph-pair of order t. Abueida and Daven have introduced the necessary and sufficient conditions of the exist-ence of multidecompositions of Pm,Pn,Pm,Cn,Pm,Kn,Cm,Cn,Cm,Kn,Km,Kn for graph- pair of order 4. As a generalization, we obtain the necessary and sufficient conditions of the exist-ence of multidecompositions of λ(Pm,Pn),λ(Pm,Cn),λ(Pm,Kn),λ(Cm,Cn),λ(Cm,Kn),λ(Km,Kn),λL(Kn) for graph-pair of order 4. %K 分解,图对,重图
Multidecompositon %K Graph-Pair %K Multigraph %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=64863