%0 Journal Article %T 一类具有对数非线性项的分数阶阻尼波方程的局部适定性
Local Well-Posedness for a Classof Fractional Damped Wave Equations with Logarithmic Nonlinearity %A 林玲娜 %J Advances in Applied Mathematics %P 1474-1482 %@ 2324-8009 %D 2023 %I Hans Publishing %R 10.12677/AAM.2023.124152 %X 本文主要考虑具有对数非线性项的分数阶阻尼波动方程\"\"的初边值 问题,其中s ∈ (0, 1)。 算子(??)s为分数阶Laplace算子,近年来,该算子成为了物理学、 金融数 学、 流体动力学等学科领域中的研究热点。 本文在任意初始能量下,利用Galerkin逼近法和压缩 映射原理,证明该方程解的局部适定性。
In this paper, we mainly deal with the initial-boundary value problem for the frac- tional damped wave equations \"\", where s ∈ (0, 1). The operator (??)s is the fractional Laplace operator. In recent years, this operator has become a research hotspot in physics, financial mathematics, fluid dynamics and oth- er disciplines. At the arbitrary initial energy levels, the local well-posedness of weak solutions to above problem is proved by using Galerkin approximation method and contraction mapping principle under some certain conditions. %K 阻尼波动方程,分数阶Laplace算子,对数非线性项,局部适定性
Damped Wave Equations %K Fractional Laplace Operator %K Logarithmic Nonlinearity %K Local Well-Posedness %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=64071