%0 Journal Article %T 一类带有p-Laplacian算子的分数阶积分边值问题的多重正解
Multiple Positive Solutions for Fractional In-tegral Boundary Value Problems with p-Laplacian Operators %A 武瑜 %A 刘畅 %J Advances in Applied Mathematics %P 1340-1350 %@ 2324-8009 %D 2023 %I Hans Publishing %R 10.12677/AAM.2023.123136 %X 本文研究了一类带有p-Laplacian算子的分数阶积分边值问题正解的存在性,通过研究格林函数的性质,运用锥拉伸锥压缩不动点定理以及Leggett-Williams不动点定理,获得了该边值问题至少存在一个正解及三个正解的充分条件,并给出实例验证所得结论。
Studying the properties of Green’s function and using the cone stretching cone compression fixed point theorem and the Leggett-Williams fixed point theorem, this paper studies the existence of positive solutions for a class of fractional integral boundary value problems with p-Laplacian oper-ators, obtains sufficient conditions for the existence of at least one positive solution and three posi-tive solutions to the boundary value problems, and gives some examples illustrating the results obtained. %K p-Laplacian算子,分数阶微分方程,边值问题
p-Laplacian Operators %K Fractional Differential Equations %K Boundary Value Problems %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=63459