%0 Journal Article
%T 定义于双曲抛物面上的多元函数切触插值问题
Multivariate Interpolate Interpolation Prob-lem Defined on a Hyperbolic Parabola
%A 董相妤
%A 崔利宏
%A 王亚琦
%A 王文跃
%J Advances in Applied Mathematics
%P 8923-8928
%@ 2324-8009
%D 2022
%I Hans Publishing
%R 10.12677/AAM.2022.1112941
%X 对函数逼近中的多元函数切触插值问题进行研究。首先对定义于双曲抛物面上的多元切触插值给出定义,其次,给出了构造多元函数插值可解泛函组的添加代数曲面法,该方法对于在计算机上以迭加方式自动完成插值可解泛函组的构造并得到插值格式提供了条件,最后给出实际算例对算法的有效性进行了验证。
The problem of multivariate function cut touch interpolation in function approximation is studied. Firstly, the multivariate tangent touch interpolation defined on hyperbolic paraboloids is defined, and secondly, the additive algebraic surface method for constructing multivariate function interpo-lation solutionable functional groups is given, which provides conditions for automatically complet-ing the construction of interpolated solutionable functional groups in superposition on computer and obtaining the interpolation format, and finally gives actual examples to verify the effectiveness of the algorithm.
%K 双曲抛物面,可解泛函组,多元函数切触插值,理想
Hyperbolic Parabola
%K Suitable Functional Group
%K Multivariate Functions Cut to Interpolation
%K Ideal
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=59556