%0 Journal Article %T 基于超收敛集群恢复的Cahn-Hilliard方程自适应有限元法
The SCR-Based Adaptive Finite ElementMethod for the Cahn-Hilliard Equation %A 田文艳 %A 陈尧尧 %A 孟朝霞 %A 贾宏恩 %J Advances in Applied Mathematics %P 8355-8367 %@ 2324-8009 %D 2022 %I Hans Publishing %R 10.12677/AAM.2022.1111884 %X Cahn-Hilliard方程为四阶非线性的偏微分方程,在物理,生物,化学等各个领域都有广泛的应用,因此研究其数值方法具有实际的应用价值。本文通过分析Cahn-Hilliard方程的一种二阶数值 格式,证明了其误差估计和无条件能量稳定性,并且提出了一个基于后验误差估计的空间和时间 自适应策略,即超收敛集群恢复(superconvergent cluster recovery,简称为SCR)方法,用于数值求解Cahn-Hilliard方程,该策略的主要思想是基于误差估计的结果来控制网格大小,从而可以有效的降低计算成本,最后通过算例证明了SCR 算法的高效性和稳定性。
The Cahn-Hilliard equation is a fourth-order nonlinear partial differential equation with a wide range of applications in various fields such as physics, biology, and chem- istry, so it is of practical application to study its numerical methods. In this study, we analyzed the Cahn-Hilliard equation in a second-order numerical format, demon- strated its error estimate and unconditional energy stability, and suggested a spatial and temporal adaptive strategy based on the posterior error estimate, namely the superconvergent cluster recovery (SCR) method, for numerical solutions. %K 误差估计,Cahn-Hilliard方程,自适应,SCR,有限元法
Error Estimate %K The Cahn-Hilliard Equation %K Adaptive %K SCR %K Finite Element Method %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=58566