%0 Journal Article
%T 二维ZIF8衍生的Fe-N-C纳米片的制备及其氧还原催化性能研究
Preparation of Two-Dimensional Fe-N-C Nanosheets Derived from ZIF8 and Their Catalytic Performance for Oxygen Reduction Reaction
%A 王晋兿
%A 刘倩
%J Material Sciences
%P 1230-1236
%@ 2160-7621
%D 2022
%I Hans Publishing
%R 10.12677/MS.2022.1211137
%X 开发先进的氧还原反应(ORR)电催化剂是提升燃料电池、金属空气电池器件效率的关键,对可再生清洁能源的存储与转换利用具有重要意义。本文首先通过无机盐氯化钾辅助热解制备了二维氮掺杂碳(2D-NC)纳米片,再利用浸渍和两步退火的方法将铁掺杂到2D-NC基质中,得到二维Fe-N-C (2D-Fe-N-C)纳米片,相对于已被广泛报道的三维Fe-N-C,二维Fe-N-C纳米片将更多的活性位点暴露在表面,有利于提升催化活性。结果表明,通过加入氯化钾,2D-NC在较低温度(700℃)下即可碳化,且通过浸渍和两步低温退火实现铁掺杂,避免了铁物种的团聚。通过优化无机盐的用量,得到2D-Fe-N-C-5催化剂在碱性溶液中具有比较优异的催化活性,相对可逆氢电极,起始电位达0.999 V,半波电位为0.808 V,其氧还原反应的动力学电流密度与商业Pt/C相当,本文的研究工作对金属–氮–碳催化剂的制备具有一定参考意义。
The development of advanced electrocatalysts for oxygen reduction reaction (ORR) is the key to improve the efficiency of fuel cells and metal-air cells, and is of great significance for the storage, conversion and utilization of renewable clean energy. In this paper, two-dimensional nitrogen-doped carbon nanosheets (2D-NC) were prepared by inorganic salt KCl assisted pyrolysis, and then iron was doped into the 2D-NC matrix by immersion and two-step annealing to obtain two-dimensional Fe-N-C nanosheets (2D-Fe-N-C). Compared with the widely reported three-dimensional Fe-N-C, two- dimensional Fe-N-C nanosheets expose more active sites on the surface, which is conducive to improving catalytic activity. The results show that 2D-NC can be carbonized at a lower temperature (700℃) by adding KCl, and iron doping can be achieved by immersion and two-step low temperature annealing, avoiding the agglomeration of iron species. By optimizing the amount of inorganic salts, 2D-Fe-N-C-5 catalyst has excellent catalytic activity in alkaline solution. The onset potential is 0.999 V (vs RHE), and the half-wave potential is 0.808 V (vs RHE). The kinetic current density of its oxygen reduction reaction is equivalent to that of commercial Pt/C. The research work in this paper has certain reference significance for the preparation of metal nitrogen carbon catalysts.
%K 金属–氮–碳,两步退火,氧还原反应,电催化,无机盐辅助热解
Metal-Nitrogen-Carbon
%K Two-Step Annealing
%K Oxygen Reduction Reaction
%K Electrocatalysis
%K Inorganic Salt Assisted Pyrolysis
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=58423