%0 Journal Article %T Burgers方程的一类三次有限体积元方法
A Cubic Finite Volume Element Method for the Burgers Equation %A 何斯日古楞 %A 张婷 %A 杨凯丽 %J International Journal of Fluid Dynamics %P 1-8 %@ 2328-0549 %D 2022 %I Hans Publishing %R 10.12677/IJFD.2022.101001 %X 本文对Burgers方程的初边值问题,用最佳应力点构建对偶网格剖分,并基于分片三次Lagrange插值试探函数空间和分片常数检验函数空间,构造了Crank-Nicolson三次有限体积元格式并证明了数值解的L2-模最优阶误差估计及其导数在最佳应力节点处的超收敛误差估计。最后,给出数值算例验证了理论分析结果以及所提格式的有效性。
In this paper, for the initial boundary value problem of the Burgers equation, the optimal stress point is used to construct a dual partition, and based on the trial function space of piecewise cubic Lagrange interpolation and the test function space of piecewise constant, the Crank-Nicolson cubic finite volume element scheme is constructed. And the L2 norm optimal order error estimate of the numerical solutions and the super-convergence error estimate of the derivative at the optimal stress node are proved. Finally, numerical examples are given to verify the theoretical analysis re-sults and the validity of the proposed scheme. %K Burgers方程,三次有限体积元法,收敛性分析
Burgers Equation %K Cubic Finite Volume Element Method %K Convergence Analysis %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=52294