%0 Journal Article %T 双圈图中Hitting Time的极值问题
Extremal Problems on the Hitting Time of Bicyclic Graphs %A 史玉妙 %A 桂雪瑶 %A 王华平 %J Advances in Applied Mathematics %P 3592-3600 %@ 2324-8009 %D 2021 %I Hans Publishing %R 10.12677/AAM.2021.1010379 %X 设HG(x,y)是图G上的随机游走中,从顶点x到顶点y的步数的期望值。本文主要研究一类双圈图G中φ(G)的极值问题,其中φ(G)=max{HG(x,y):x,y∈V(G)}。利用有效电阻,刻画出了在这类双圈图中,φ(G)达到极值时,相应的极图以及两点在图中的位置。
Let HG(x,y) be the expected steps from vertex x to vertex y on random walk on graph G. In this paper, we will consider the extremal values of φ(G) in bicyclic graphs G, where φ(G)=max{HG(x,y):x,y∈V(G)}. By using effective resistance, we characterize the corresponding extremal graph and the position of two vertices in the graph when φ(G) reaches the extremum. %K Hitting Time,有效电阻,双圈图
Hitting Time %K Effective Resistance %K Bicyclic Graph %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=46061