%0 Journal Article %T 带积分边界条件的非线性二阶常微分方程多个正解的存在性
Existence of Multiple Positive Solutions for Nonlinear Second-Order Ordinary Differential Equations with Integral Boundary Conditions %A 康慧君 %J Pure Mathematics %P 1067-1075 %@ 2160-7605 %D 2021 %I Hans Publishing %R 10.12677/PM.2021.116121 %X
运用锥上的 Krasnoselskii’s 不动点定理,考虑了二阶积分边值问题\"\" 多个正解的存在性,其中0 < η < 1是常数,0 < λ < 2/n2是参数,f:[0,1]×[0,∞)→[0,∞)是连续函数,a:[0,1]→[0,+∞)是连续函数,且在[0,1]的任一子区间上不恒为零.
In this paper, we study existence of multiple positive solutions for second-order ordinary differential equations with integral boundary problem\"\" by the Krasnoselskii’s fixed point theorem on cones. where 0 < η < 1 is a constant, 0 < λ < 2/n2 is a parameter, f:[0,1]×[0,∞)→[0,∞) is continuous, a:[0,1]→[0,+∞) is continuous, and a(t) ? 0 on any subinterval of [0,1].

%K 积分边界条件,二阶,多个正解,Krasnoselskii’s不动点定理
Integral Boundary Conditions %K Second-Order %K Multiple Positive Solutions %K Krasnoselskii’s Fixed Point Theorem %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=43085