%0 Journal Article %T 特殊图类的符号罗马控制数
The Signed Roman Domination Number of a Special Graph %A 马艺晓 %A 红霞 %J Pure Mathematics %P 313-318 %@ 2160-7605 %D 2021 %I Hans Publishing %R 10.12677/PM.2021.113041 %X
设图G=(V,E)为一个简单无向图,若S?V,则记f(S)=∑v∈sf(v)。若实值函数\"\"满足以下两个条件:(i) 对于任意的顶点v∈V,均有f[v]≥1成立;(ii) 如果对任意的顶点v∈V,若f(v)=?1,则存在一个与v相邻的顶点u∈V满足f(u)=2,则称该函数为图G的符号罗马控制函数。图G的符号罗马控制数定义为γsR(G)=min{f(V)|f为图G的一个符号罗马控制函数}。本文利用构造法及穷标法主要得到了特殊图类2?Cn的符号罗马控制数的精确值。
Let G=(V,E) be a simple undirected graph and denotes f(S)=∑v∈sf(v) for S?V. A signed Roman domination function \"\" satisfying the conditions that (i) f[v]≥1 for any v∈V, and (ii) every vertex v for which f(v)=?1 is adjacent to a vertex u for which is f(u)=2. The signed Roman domination number of G is γsR(G)=min{f(V)|f is a signed Roman function domination f of G}. In this paper, we determine exact values of the signed Roman domination number of a special graph 2?Cn by constructive method and exhaustive method.
%K 符号罗马控制函数,符号罗马控制数,图2·Cn
Signed Roman Domination Function %K Signed Roman Domination Number %K Graph 2·Cn %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=41029