%0 Journal Article %T Lie Ideals of Semiprime Rings with Generalized Derivations %A Emine KO£¿ S£¿G¨¹TC¨¹ %A £¿znur G£¿LBA£¿I %J - %D 2018 %X Let R be a 2- torsion free semiprime ring, U a noncentral square-closed Lie ideal of R. A map F:R¡úR is called a generalized derivations if there exists a derivation d:R¡úR such that F(xy)=F(x)y+xd(y), for all x,y¡ÊR. In the present paper, we shall prove that h is commuting map on U if any one of the following holds: i) F(u)u=¡ÀuG(u), ii) [F(u),v]=¡À[u,G(v)], iii) F(u)¡ãv=¡À u¡ãG(v), iv) [F(u),v]=¡Àu¡ãG(v), v)F([u,v])=[F(u),v]+[d(v),u] for all u,v¡ÊU, where G:R¡úR is a generalized derivation associated with the derivation h:R¡úR %K Yar£¿asal halka %K Lie ideal %K T¨¹rev %K Genelle£¿tirilmi£¿ t¨¹rev %U http://dergipark.org.tr/adyusci/issue/38036/348566