%0 Journal Article %T Cell-Imprint Surface Modification by Contact Photolithography-Based Approaches: Direct-Cell Photolithography and Optical Soft Lithography Using PDMS Cell Imprints %J - %D 2019 %R https://doi.org/10.1021/acsami.9b00523 %X New cell-imprint surface modification techniques based on direct-cell photolithography and optical soft lithography using poly(dimethylsiloxane) (PDMS) cell imprints are presented for enhanced cell-based studies. The core concept of engineering materials for cell-based studies is the material¡¯s ability to redesign the physicochemical characteristics of the cellular niche. There is a growing interest in direct molding from cells (cell imprinting). These negative copies of cell surface topographies have been shown to affect cell shape and direct mesenchymal stem cells¡¯ differentiation. Analyzing the results is however challenging as cells seeded on these substrates do not always end up in a cell pattern, which leads to decreased effectiveness and biased quantification. To gain control over cell seeding into the patterns and avoid unwanted cell population outside of the patterns, the cell-imprinted surface needs to be modified. From this perspective, the standard optical contact lithography process was modified and cells were introduced to the cleanroom. Direct-cell photolithography was used for a single-step PDMS cell-imprint (chondrocytes as the molding template) surface modification down to single-cell (approximately 5 ¦Ìm in diameter) resolution. As cells come in a variety of shapes, sizes, and optical profiles, a complementary optical soft lithography-based photomask fabrication technique is also reported. The simplicity of the fabrication process makes this cell-imprint surface modification technique compatible with any adherent cell type and leads to efficient cell-based studies %U https://pubs.acs.org/doi/10.1021/acsami.9b00523