%0 Journal Article %T Direct Formation of C¨CC Double-Bonded Structural Motifs by On-Surface Dehalogenative Homocoupling of gem-Dibromomethyl Molecules %J - %D 2018 %R https://doi.org/10.1021/acsnano.8b02459 %X Conductive polymers are of great importance in a variety of chemistry-related disciplines and applications. The recently developed bottom-up on-surface synthesis strategy provides us with opportunities for the fabrication of various nanostructures in a flexible and facile manner, which could be investigated by high-resolution microscopic techniques in real space. Herein, we designed and synthesized molecular precursors functionalized with benzal gem-dibromomethyl groups. A combination of scanning tunneling microscopy, noncontact atomic force microscopy, high-resolution synchrotron radiation photoemission spectroscopy, and density functional theory calculations demonstrated that it is feasible to achieve the direct formation of C¨CC double-bonded structural motifs via on-surface dehalogenative homocoupling reactions on the Au(111) surface. Correspondingly, we convert the sp3-hybridized state to an sp2-hybridized state of carbon atoms, i.e., from an alkyl group to an alkenyl one. Moreover, by such a bottom-up strategy, we have successfully fabricated poly(phenylenevinylene) chains on the surface, which is anticipated to inspire further studies toward understanding the nature of conductive polymers at the atomic scale %U https://pubs.acs.org/doi/10.1021/acsnano.8b02459