%0 Journal Article %T Continuous chatter of the Cascadia subduction zone revealed by machine learning %J - %D 2018 %R https://doi.org/10.1038/s41561-018-0274-6 %X Tectonic faults slip in various manners, which range from ordinary earthquakes to slow slip events to aseismic fault creep. Slow slip and associated tremor are common to many subduction zones, and occur down-dip from the neighbouring locked zone where megaquakes take place. In the clearest cases, such as Cascadia, identified tremor occurs in discrete bursts, primarily during the slow slip event. Here we show that the Cascadia subduction zone is apparently continuously broadcasting a low-amplitude, tremor-like signal that precisely informs of the fault displacement rate throughout the slow slip cycle. Using a method based on machine learning previously developed in the laboratory, we analysed large amounts of raw seismic data from Vancouver Island to separate this signal from the background seismic noise. We posit that this provides indirect real-time access to fault physics on the down-dip portion of the megathrust, and thus may prove useful in determining if and how a slow slip may couple to or evolve into a major earthquake %U https://www.nature.com/articles/s41561-018-0274-6