%0 Journal Article %T Fundamentals of C每O bond activation on metal oxide catalysts %J - %D 2019 %R https://doi.org/10.1038/s41929-019-0234-6 %X Fundamental knowledge of the active site requirements for the selective activation of C每O bonds over heterogeneous catalysts is required to design multistep processes for the synthesis of complex chemicals. Here we employ reaction kinetics measurements, extensive catalyst characterization, first principles calculations and microkinetic modelling to reveal metal oxides as a general class of catalysts capable of selectively cleaving C每O bonds with unsaturation at the 汐 position, at a moderate temperature and H2 pressure. Strikingly, metal oxides are considerably more active catalysts than commonly employed VIIIB and IB transition metal catalysts. We identify the normalized Gibbs free energy of oxide formation as both a reactivity and a catalyst stability descriptor and demonstrate the generality of the radical-mediated, reverse Mars每van Krevelen C每O bond activation mechanism on oxygen vacancies, previously established only for RuO2. Importantly, we provide evidence that the substrate plays an equally key role to the catalyst in C每O bond activation %U https://www.nature.com/articles/s41929-019-0234-6