%0 Journal Article %T 基于自适应K-SVD字典的视频帧稀疏重建算法 %J - %D 2017 %X 压缩感知理论的一个重要前提是找到信号的稀疏域,其直接影响着算法的重构精度,研究快速高效的信号稀疏表示方法具有重大的现实意义.为了提高字典训练速度与性能,基于传统的K-SVD算法,提出了一种自适应K-SVD字典学习算法(Adaptive K-SVD).该算法交替执行稀疏编码阶段和字典更新阶段.在稀疏编码阶段,通过引入自适应稀疏约束机制,以获得更稀疏的表示系数,从而进一步提高字典的更新效率;而在字典更新阶段,则使用经典K-SVD的字典更新方式来实现字典原子的逐列更新.将所提算法应用于压缩感知理论的信号稀疏表示中,实现视频帧的稀疏重建.仿真对比实验结果表明,所提算法比经典的K-SVD算法的字典训练速度更快,稀疏表示性能更优,且能有效减少压缩感知的重构误差 %K K-SVD算法 %K 自适应K-SVD算法 %K 字典学习 %K 稀疏表示 %K 压缩感知 %U http://www.xactad.org//oa/darticle.aspx?type=view&id=201706008