%0 Journal Article %T 概率潜在语义分析的KNN文本分类算法 %J - %D 2017 %X 传统的KNN文本算法在计算文本之间的相似度时,只是做简单的概念匹配,没有考虑到训练集与测试集文本中词项携带的语义信息,因此在利用KNN分类器进行文本分类过程中有可能导致语义丢失,分类结果不准确.针对这种情况,提出了一种基于概率潜在主题模型的KNN文本分类算法.该算法预先使用概率主题模型对训练集文本进行文本-主题、主题-词项建模,将文本携带的语义信息映射到主题上的低维空间,把文本相似度用文本-主题、主题-词项的概率分布表示,对低维文本的语义信息利用KNN算法进行文本分类.实验结果表明,在训练较大的训练数据集和待分类数据集上,所提算法能够利用KNN分类器进行文本的语义分类,且能提高KNN分类的准确率和召回率以及F1值 %K 文本分类 %K KNN算法 %K 文本表示模型 %K 语义分类 %K 概率潜在主题模型 %U http://www.xactad.org//oa/darticle.aspx?type=view&id=201707013