%0 Journal Article %T 基于改进堆叠自动编码机的垃圾邮件分类 %A 何军 %A 邓扬 %J 计算机应用 %D 2016 %R 10.11772/j.issn.1001-9081.2016.01.0158 %X 摘要 针对堆叠自动编码机(SA)容易产生过拟合而降低垃圾邮件分类精度的问题,提出了一种基于动态dropout的改进堆叠自动编码机方法。首先分析了垃圾邮件分类问题的特殊性,将dropout算法引入到堆叠自动编码机算法中;同时,根据传统dropout算法容易使部分节点长期处于熄火状态的缺陷,提出了一种动态dropout改进算法,使用动态函数将传统静态熄火率修改为随着迭代次数逐渐减小的动态熄火率;最后,利用动态dropout算法改进堆叠自动编码机的预训练模型。仿真结果表明,相比支持向量机(SVM)和反向传播(BP)神经网络,改进的堆叠自动编码机平均准确率达到了97.66%,各个数据集上马修斯系数都大于89%;与传统堆叠自动编码机相比,改进的堆叠自动编码机的马修斯系数在Error1~6数据集上分别提高了3.27%、1.68%、2.16%、1.51%、1.58%、1.07%。实验结果表明,基于动态dropout算法的改进堆叠自动编码机具有更高的分类精度和更好的稳定性 %K 深度学习 %K 堆叠自动编码机 %K dropout %K 支持向量机 %K 垃圾邮件 %K 分类 %U http://www.joca.cn/CN/abstract/abstract18948.shtml