%0 Journal Article %T 简化的Slope One在线评分预测算法 %A 孙丽梅 %A 曹科研 %A 李悦 %J 计算机应用 %D 2018 %R 10.11772/j.issn.1001-9081.2017082493 %X 摘要 个性化推荐系统是大数据时代信息过滤的有效手段,影响推荐系统预测准确性的主要原因之一是数据稀疏性。Slope One评分预测推荐算法采用简单的线性回归模型解决数据稀疏问题,具有易于实现、评分预测速度快的特点,但它在训练阶段生成项目之间评分差的时间和空间消耗大,训练阶段需离线进行。为解决以上问题,提出一种简化的Slope One算法——Simplified Slope One,以两项目历史平均分之差代替项目评分差,来降低算法的时间复杂度和空间复杂度,简化耗时最多的生成项目之间评分差的过程,以有效提高评分数据的利用率,对稀疏数据有更好的适应性。在Movielens数据集上利用按照时间戳排序后划分的测试集进行实验,结果表明Simplified Slope One算法对评分预测的准确性与原Slope One算法接近,但时间复杂度和空间复杂度均低于原Slope One算法,更适合在数据规模增长迅速的大型推荐系统中应用 %K 个性化推荐 %K Slope One算法 %K 在线 %K 评分预测 %K 推荐系统 %U http://www.joca.cn/CN/abstract/abstract21547.shtml