%0 Journal Article %T 基于Moreau-包络的近似平滑迭代磁共振图像重建算法 %A 冯前进 %A 路利军 %A 陈武凡 %J 计算机应用 %D 2018 %R 10.11772/j.issn.1001-9081.2017122980 %X 摘要 针对基于压缩感知(CS)的磁共振成像(MRI)稀疏重建中存在的两个非平滑正则项问题,提出了一种基于Moreau包络的近似平滑迭代算法(PSIA)。基于CS的经典MRI稀疏重建是求解一个由最小二乘保真项、小波变换稀疏正则项和总变分(TV)正则项线性组合成的目标函数最小化问题。首先,对目标函数中的小波变换正则项作平滑近似;然后,将数据保真项与平滑近似后的小波正则项的线性组合看成一个新的可以连续求导的凸函数;最后,采用PSIA对新的优化问题进行求解。该算法不仅可以同时处理优化问题中的两个正则约束项,还避免了固定权重带来的算法鲁棒性问题。仿真得到的体模图像及真实磁共振图像的实验结果表明,所提算法与四种经典的稀疏重建算法:共轭梯度(CG)下降算法、TV1范数压缩MRI(TVCMRI)算法、部分k空间重建算法(RecPF)和快速复合分离算法(FCSA)相比,在图像信噪比、相对误差和结构相似性指数上具有更好的重建结果,且在算法复杂度上与现有最快重建算法即FCSA相当 %K 压缩感知 %K 磁共振图像重建 %K 稀疏重建 %K 凸优化 %K 近似平滑 %U http://www.joca.cn/CN/abstract/abstract22173.shtml