%0 Journal Article %T 基于交通场景区域增强的单幅图像去雾方法 %A 彭德巍 %A 郭梁 %A 金彦旭 %J 计算机应用 %D 2018 %R 10.11772/j.issn.1001-9081.2017112663 %X 摘要 针对当前已有的去雾算法在雾天道路图像的处理上易造成近处路面区域和远处天空区域亮度过低、处理程度偏强,而中远处区域去雾程度较低、亮度过高等问题,以基于深度学习去雾算法为基础提出一种结合雾天道路图像场景深度和道路图像特点的去雾算法。首先基于深度学习的去雾算法原理,构建卷积神经网络求取场景透射率;然后基于大气散射模型和透射率估计出图像深度图,且构造两个参数:上阈值和下阈值来将深度图分为中、远、近三个区域;再基于深度图的不同区域构造增强函数,来确定图像处理的增强幅度照;最后在传统的大气散射模型基础上结合增强幅度照来调节不同区域的复原强度得到优化后的处理图像。实验结果表明,所提算法可以在保证良好去雾效果的前提下增强道路图像的中远处区域,有效解决了去雾后雾天道路图像近处路面和远处天空的色彩失真、对比度过低问题,提升复原图像的视觉效果,并且与暗原色先验算法、均匀与非均匀雾的视觉增强算法以及典型的基于深度学习去雾算法相比具有更好的图像清晰化效果 %K 雾天交通图像 %K 图像去雾 %K 卷积神经网络 %K 深度图 %U http://www.joca.cn/CN/abstract/abstract21904.shtml