%0 Journal Article %T 基于会话时序相似性的矩阵分解数据填充 %A 张宇翔 %A 肖春景 %J 计算机应用 %D 2018 %R 10.11772/j.issn.1001-9081.2018010264 %X 摘要 针对已有数据填充方法只考虑评分信息和传统相似性,无法捕获用户间真实相似关系的问题,提出了基于会话时序相似性的矩阵分解数据填充方法来缓解数据稀疏性、提高推荐精度。首先,分析了传统相似性的缺陷,并根据时序相似性和相异性提出了基于会话时序相似性度量,它结合了时间上下文和评分信息,能更好地捕获用户间的真实关系,从而识别近邻;接着,根据目标用户的近邻及其消费的项目抽取了具有用户和项目潜在影响因素的待填充的关键项目集合,并利用矩阵分解填充关键项目集合;然后,利用隐含狄利克雷分布(LDA)抽取用户在每个时间段内的概率主题分布,并利用时间惩罚权值建立用户动态偏好模型;最后,根据用户间概率主题分布的相关性和基于用户的协同过滤完成项目推荐。实验结果表明,与其他数据填充方法相比,基于会话时序相似性的矩阵分解数据填充方法在不同稀疏度下都能降低平均绝对误差(MAE),提高推荐性能 %K 数据稀疏 %K 数据填充 %K 时序上下文 %K 矩阵分解 %K 时间权值 %U http://www.joca.cn/CN/abstract/abstract22305.shtml