%0 Journal Article %T 云计算资源的动态随机扰动的粒子群优化策略 %A 杨谊 %A 钱俊 %J 计算机应用 %D 2018 %R 10.11772/j.issn.1001-9081.2018040898 %X 摘要 云计算环境中的资源具有动态性和异构性,大规模任务资源分配的目标是最小化完成时间和资源占用,同时具有尽可能好的负载均衡,这是一个非确定性多项式(NP)问题。借鉴智能群体算法的优点,提出基于改进的粒子群优化(PSO)算法构建混合式群体智能调度策略——动态随机扰动的PSO策略(DRDPSO)。首先,将PSO的惯性权重常数修改为变量,实现对求解过程收敛速度的合理控制;其次,缩小每次迭代的搜索范围,在保留候选最优集合的前提下减少无效搜索;然后,引入选择操作,筛选出优质个体并传递到下一代;最后,设计随机扰动,提高候选解的多样性,在一定程度上避免了局部最优陷阱。在CloudSim平台上进行了两类仿真测试,结果表明,处理同构任务时,在大部分情况下DRDPSO的指标都优于模拟退火遗传算法(SAGA)和遗传算法(GA)+PSO算法,总执行时间比SAGA减少13.7%~37.0%,比GA+PSO减少13.6%~31.6%;其资源耗费比SAGA减少9.8%~17.1%,比GA+PSO减少0.6%~31.1%;其迭代次数比SAGA减少15.7%~60.2%,比GA+PSO减少1.4%~54.7%;其负载均衡度比SAGA减小8.1%~18.5%,比GA+PSO减少2.7%~15.3%,且波动幅度最小。处理异构任务时,三种算法表现出相似的规律:CPU型任务的总执行时间最多,混合型任务次之,IO型任务最少,DRDPSO的综合指标最好,较为适合处理多种类型的异构任务,而GA+PSO算法适合快速求解混合型任务,SAGA则适合快速求解IO型任务。所提DRDPSO在处理较大规模的同构和异构任务时,能够较为明显地缩短总的任务执行时间,不同程度地提高资源利用率,并适当兼顾计算节点的负载均衡 %K 云计算资源 %K 动态调度 %K 群体智能算法 %K 混合式调度策略 %K 随机扰动 %U http://www.joca.cn/CN/abstract/abstract22735.shtml