%0 Journal Article %T 基于趋势特征表示的shapelet分类方法 %A 孟凡荣 %A 闫秋艳 %J 计算机应用 %D 2017 %R 10.11772/j.issn.1001-9081.2017.08.2343 %X 摘要 Shapelet是一种具有辨识性的时间序列子序列,通过识别局部特征达到对时间序列准确分类的目的。原始shapelet发现算法效率较低,大量工作关注于提高shapelet发现的效率。然而,对于带有趋势变化的时间序列,采用典型的时间序列表示方法进行shapelet发现,容易造成序列中趋势信息的丢失。为了解决时间序列趋势信息丢失的问题,提出一种基于趋势特征的多样化top-k shapelet分类方法:首先采用趋势特征符号化方法对时间序列的趋势信息进行表示;然后针对序列的趋势特征符号获取shapelet候选集合;最后通过引入多样化top-k查询算法从候选集中选取k个最具代表性的shapelets。在时间序列的分类实验中,与传统分类算法相比,所提方法在11个数据集上的分类准确率均有提升;与FastShapelet算法相比,提升了运行效率,缩短了算法的运行时间,并在趋势信息明显的数据上效果显著。结果表明,所提方法能有效提高时间序列的分类准确率,提升算法运行效率 %K shapelet %K 趋势特征 %K 符号化 %K 多样化top-k查询 %K 时间序列分类 %U http://www.joca.cn/CN/abstract/abstract20944.shtml