%0 Journal Article %T 粒子群优化混合核极限学习机的构造煤厚度预测方法 %A 徐慧 %A 王新 %J 计算机应用 %D 2018 %R 10.11772/j.issn.1001-9081.2017112807 %X 摘要 在构造煤厚度的预测中,针对预测精度不高的问题,提出利用粒子群优化(PSO)算法优化极限学习机(ELM)的方法来对构造煤厚度进行预测。首先,利用主成分分析(PCA)对三维地震属性进行降维处理,在降低地震属性的维数的同时消除变量之间的相关性。然后,构建全局多项式核函数和局部高斯径向基核函数混合核极限学习机(HKELM)模型,并利用PSO算法优化HKELM的核参数。同时,针对PSO算法存在容易陷入局部最优的问题,在PSO算法中加入模拟退火的思想和随迭代次数减小的惯性权重,以及基于反向学习的变异操作,使PSO算法可以更容易跳出局部极小值点,得到更优结果。此外,为了增强模型的泛化能力,在核函数的基础上加入L2正则项,有效地避免了噪声和异常点对模型泛化性能的影响。最后,将预测模型应用到阳煤集团新景矿区芦南二采区中部15#煤层中,预测得到的采区构造煤厚度与实际地质资料具有较高的一致性。实验结果表明,利用改进PSO算法优化HKELM构建构造煤厚度预测模型的预测误差较小,可以推广用于实际采区的构造煤厚度预测 %K 主成分分析 %K 粒子群优化 %K 核函数 %K 极限学习机 %K 构造煤 %K 厚度预测 %U http://www.joca.cn/CN/abstract/abstract21986.shtml