%0 Journal Article %T 计算机视觉用于猪肉新鲜度检测的颜色特征优化选取 %J - %D 2016 %X 摘要 在以计算机视觉为基础,并利用神经网络预测猪肉通脊新鲜度时,选择合适的颜色特征参数和神经网络模型是提高其预测准确性的关键之一.文中提出了一种猪肉新鲜度等级预测时颜色特征参数和神经网络优化选取的方法,利用图像处理的方法提取通脊表面的颜色特征参数,组合成RGB-HIS、RGB-L*a*b*、rgb-HIS、rgb-L*a * b*及HIS-L*a*b*五类特征参数组合,并利用BP(back propagation,BP)和SVM(support vector machine,SVM)神经网络构造各类新鲜度等级预测模型.结果表明:SVM和BP的平均预测准确率分别为91.11%和84.44%,且rgb-HIS特征参数组合的BP与SVM预测模型的预测准确率最高,分别为88.89%和95.56%.因此,提取通脊表面r、g、b、H、I、S均值作为颜色特征向量,且选择SVM神经网络来构造新鲜度预测模型可显著提高预测结果的准确性 %U http://sf1970.cnif.cn/CN/abstract/abstract14419.shtml