%0 Journal Article %T 不同种植密度烟草叶面积指数的高光谱估测模型 %A 贾方方 %J - %D 2017 %R 10.13496/j.issn.1007-5119.2017.04.006 %X 摘要: 烟草叶面积指数(LAI)是评价其长势和预测产量的重要指标。利用高光谱遥感能够实现LAI的快速无损监测。为建立烟草LAI估算的最佳光谱指数及监测模型,通过设置不同种植密度处理,将田间观测和高光谱遥感技术结合,提取和分析了10个植被指数,并用二次多项式模型、对数模型、逐步回归模型(SMLR)和BP神经网络对烟草LAI进行估算。结果表明,NDVI、RVI、MCARI、GM1、GNDVI2和PSSRb等植被指数同烟草LAI均达到极显著正相关,相关系数均大于0.80。烟草LAI的二次多项式模型、对数模型、逐步回归模型(SMLR)和BP神经网络模型的决定系数R2分别为0.69、0.57、0.89和0.90。经检验,4个模型的均方根误差RMSE分别为0.69、0.87、0.62和0.44。表明SMLR和BP神经网络LAI都取得了较为理想的结果,其中BP神经网络的精度最高、误差最小,更适合对烟草LAI进行反演。该结果为实现不同种植密度水平下烟草LAI的精确监测提供技术支持和地域参考 %K 种植密度 %K 叶面积指数 %K 高光谱 %K 烟草 %K 预测模型 %U http://www.zgyckx.com.cn/CN/10.13496/j.issn.1007-5119.2017.04.006