%0 Journal Article %T 一类微差分方程整函数解的性质
The Properties of Entire Solutions of a Certain Type of Differential-Difference Equations %A 吴丽镐 %J - %D 2018 %R 10.16357/j.cnki.issn1000-5862.2018.06.05 %X 利用值分布理论对一类微差分方程f(z)n+P(f)=β1eα1z+β2eα2z+β3eα3z的整函数解的存在性、增长性和零点收敛指数进行了研究,其中αi,βi(i=1,2,3)为复常数,P(f)为f(z)的1阶微差分多项式,并推广了已有的一些结论.
By using the value distribution theory,the existence,growth and exponent of convergence of zeros of entire solutions of a certain type of differential-difference equations of the form f(z)n+P(f)=β1eα1z+β2eα2z+β3eα3z are considered,where αi,βi(i=1,2,3) are constants.P(f) denotes an algebraic differential-difference polynomial in f(z) of degree one.And some known results obtained most recently are improved %K 微差分方程 %K 整函数 %K 收敛指数
微差分方程 整函数 收敛指数 %K 微差分方程 整函数 收敛指数 %K 微差分方程 整函数 收敛指数 %U http://lkxb.jxnu.edu.cn//oa/darticle.aspx?type=view&id=201806005