%0 Journal Article %T HDAC4-Myogenin Axis As an Important Marker of HD-Related Skeletal Muscle Atrophy %A Cleo J. L. M. Smeets %A Gillian P. Bates %A Izabela Piotrowska %A James R. T. Dick %A Linda Greensmith %A Marie K. Bondulich %A Marta Toczek %A Mhoriam Ahmed %A Michal Mielcarek %A Nelly Jolinon %A Ryszard T. Smolenski %A Sophie A. Franklin %A Thomas Muller %J - %D 2015 %R 10.1371/journal.pgen.1005021 %X Skeletal muscle remodelling and contractile dysfunction occur through both acute and chronic disease processes. These include the accumulation of insoluble aggregates of misfolded amyloid proteins that is a pathological feature of HuntingtonĄ¯s disease (HD). While HD has been described primarily as a neurological disease, HD patientsĄ¯ exhibit pronounced skeletal muscle atrophy. Given that huntingtin is a ubiquitously expressed protein, skeletal muscle fibres may be at risk of a cell autonomous HD-related dysfunction. However the mechanism leading to skeletal muscle abnormalities in the clinical and pre-clinical HD settings remains unknown. To unravel this mechanism, we employed the R6/2 transgenic and HdhQ150 knock-in mouse models of HD. We found that symptomatic animals developed a progressive impairment of the contractile characteristics of the hind limb muscles tibialis anterior (TA) and extensor digitorum longus (EDL), accompanied by a significant loss of motor units in the EDL. In symptomatic animals, these pronounced functional changes were accompanied by an aberrant deregulation of contractile protein transcripts and their up-stream transcriptional regulators. In addition, HD mouse models develop a significant reduction in muscle force, possibly as a result of a deterioration in energy metabolism and decreased oxidation that is accompanied by the re-expression of the HDAC4-DACH2-myogenin axis. These results show that muscle dysfunction is a key pathological feature of HD %K Skeletal muscles %K Mouse models %K Atrophy %K Muscle proteins %K Muscle contraction %K Huntington disease %K Muscle functions %K Skeletal muscle fibers %U https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005021