%0 Journal Article %T 基于3D卷积神经网络的无参考视频质量评价 %A 张维刚 %A 王春峰 %A 苏荔 %A 黄庆明 %J - %D 2016 %X 无参考视频质量评价(NR-VQA)在无法获得原始高质量视频参照的前提下,对失真视频的视觉质量进行定量度量.常规NR-VQA方法通常针对特定失真类型设计,或者与人的主观感受存在偏差.首次将3D深度卷积神经网络(3D-CNN)引入到了视频质量评价中,提出了一种基于3D-CNN的无参考视频质量评价方法,可以适用于非特定失真类型的NR-VQA.首先,通过3D块来有效学习和表征视频内容的时空特征.其次,对常规的3D卷积网络模型进行改进,使其适用于视频质量评价的任务.实验结果表明,所提出的方法在多种失真类型和多个测试指标上,与人的主观感知一致性较高.作为无参考视频质量评价方法,其性能与许多全参考评价方法具有可比性,同时比主流的NR-VQA方法具有更快的运行速度,这使得所提模型在实际中具有更好的应用前景 %K 视频质量评价 3D 深度卷积神经网络 无参考 全参考 %U http://www.jos.org.cn/jos/ch/reader/view_abstract.aspx?file_no=16025&flag=1