%0 Journal Article %T Root separation for reducible monic polynomials of odd degree %A Dujella %A Andrej %A Pejkovi£¿ %A Tomislav %J - %D 2017 %R 10.21857/mnlqgcj04y %X Sa£¿etak We study root separation of reducible monic integer polynomials of odd degree. Let H(P) be the na£¿ve height, sep(P) the minimal distance between two distinct roots of an integer polynomial P(x) and sep(P) = H(P)^(-e(P)). Let e_r*(d) = lim sup_{deg(P)=d, H(P)¡ú+¡Þ} e(P), where the lim sup is taken over the reducible monic integer polynomials P(x) of degree d. We prove that e_r*(d) ¡Ü d - 2. We also obtain a lower bound for e_r*(d) for d odd, which improves previously known lower bounds for e_r*(d) when d ¡Ê {5, 7, 9} %K Integer polynomials %K root separation %U https://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=274956