%0 Journal Article %T Asymptotics of partial sums of the Dirichlet series of the arithmetic derivative %A Haukkanen %A Pentti %A Merikoski %A Jorma K. %A Tossavainen %A Timo %J - %D 2020 %X Sa£żetak Let $p\in\mathbb P$ and $s\in\mathbb R$, and suppose that$\emptyset\ne P\subset\mathbb P$ is finite.Given $n\in\mathbb Z_+$, let $n'$, $n'_p$, and $n'_P$ denote respectively its arithmetic derivative, arithmetic partial derivative with respect to~$p$,and arithmetic subderivative with respect to~$P$. We study the asymptotics of $$\sum_{1\le n\le x}\frac{n'}{n^s},\,\sum_{1\le n\le x}\frac{n'_p}{n^s},\quad{\rm and}\,\,\sum_{1\le n\le x}\frac{n'_P}{n^s}.$$ We also show that the abscissa of convergence of the corresponding Dirichlet series equals~two %K Abscissa of convergence %K arithmetic derivative %K Dirichlet series %U https://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=342235