%0 Journal Article %T ĦħAlmostĦħ universality of the Lerch zeta-function %A Laurin£żikas %A Antanas %J - %D 2019 %X Sa£żetak The Lerch zeta-function $L(\lambda,\alpha,s)$ with transcendental parameter $\alpha$, or with rational parameters $\alpha$ and $\lambda$ is universal, i.e., a wide class of analytic functions is approximated by shifts $L(\lambda,\alpha,s+i\tau)$, $\tau \in \mathbb{R}$. The case of algebraic irrational $\alpha$ is an open problem. In the paper, it is proved that, for all parameters $\alpha$, $0<\alpha< 1$, and $\lambda$, $0<\lambda\leqslant 1$, including an algebraic irrational $\alpha$, there exists a closed non-empty set of analytic functions $F_{\alpha, \lambda}$ such that every function $f\in F_{\alpha, \lambda}$ can be approximated by shifts $L(\lambda,\alpha,s+i\tau)$ %K Lerch zeta-function %K support of probability measure %K universality %K weak convergence %U https://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=314487