%0 Journal Article %T 一类超混沌的Faraday圆盘发电机的Zero-Zero-Hopf分支
Zero-Zero-Hopf Bifurcation of a Hyperchaotic Faraday Disk Dynamo %A 余环宇 %J Pure Mathematics %P 518-523 %@ 2160-7605 %D 2020 %I Hans Publishing %R 10.12677/PM.2020.105063 %X
本文主要研究了一类四维的self-exciting Faraday圆盘发电机,它描述了azimuthal eddy流的作用。首先通过计算Lyapunov指数,发现该系统是一个超混沌的系统。然后研究了系统的zero-zero-Hopf分支。利用平均理论,获得了在zero-zero-Hopf分支点存在两个周期解的充分条件,并进一步讨论了周期解的稳定性。
The paper investigates the bifurcation of periodic solutions at the zero-zero-Hopf equilibrium of a hyperchaotic Faraday disk dynamo. By means of the averaging theory, the paper obtains the suffi-cient conditions that two periodic solutions will appear at the bifurcation point and discusses the stability of the two orbits.
%K Faraday圆盘发电机,超混沌,Zero-Zero-Hopf分支,周期解,平均理论
Faraday Disk Dynamo %K Hyperchaos %K Zero-Zero-Hopf Bifurcation %K Periodic Solution %K Averaging Theory %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=35660