%0 Journal Article %T 由GRS码构造新的量子MDS码
New Quantum MDS Codes from GRS Codes %A 陈硕 %A 唐西林 %J Pure Mathematics %P 876-888 %@ 2160-7605 %D 2020 %I Hans Publishing %R 10.12677/PM.2020.109102 %X

量子MDS码的构造如今变得越来越重要。本文我们对q2-1作素数分解并讨论了q的奇偶性,在有限域Fq2上构造了4类新的量子MDS码。这些量子MDS码参数更灵活,最小距离大。此外,我们通过L1-forms和L2-forms可以找到那些极小距离大于q/2+1的那些量子MDS码。
It becomes more important to construct quantum maximum-distance-separable (MDS) codes by means of the self-dual Generalized Reed-Solomon (GRS) codes. In this paper, we construct four classes of quantum MDS codes over a finite field Fq2 through the prime decomposition of q2-1 and the discussion of the parity of q. These quantum MDS codes have more flexible parameters with large minimum distance. Further, those quantum codes of the minimum distances larger than q/2+1 can be found by L1-forms and L2-forms.

%K 量子码,厄米特自正交,GRS码
Quantum MDS Code %K Hermitian Self-Orthogonal %K GRS Codes %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=37808