%0 Journal Article %T It¡¯s All About the Networks %A Jerry J. Shih %J Epilepsy Currents %@ 1535-7511 %D 2019 %R 10.1177/1535759719843301 %X Interictal stereotactic-EEG functional connectivity in refractory focal epilepsies Lagarde S, Roehri N, Lambert I, et al. Brain. 2018;141(10):2966-2980. Drug-refractory focal epilepsies are network diseases associated with functional connectivity alterations both during ictal and interictal periods. A large majority of studies on the interictal/resting state have focused on functional magnetic resonance imaging (MRI)-based functional connectivity. Few studies have used electrophysiology, despite its high-temporal capacities. In particular, stereotactic-electroencephalogram (EEG) is highly suitable to study functional connectivity because it permits direct intracranial electrophysiological recordings with relative large-scale sampling. Most previous studies in stereotactic-EEG have been directed toward temporal lobe epilepsy, which does not represent the whole spectrum of drug-refractory epilepsies. The present study aims at filling this gap, investigating interictal functional connectivity alterations behind cortical epileptic organization and its association with postsurgical prognosis. To this purpose, we studied a large cohort of 59 patients with malformation of cortical development explored by stereotactic-EEG with a wide spatial sampling (76 distinct brain areas were recorded, median of 13.2 per patient). We computed functional connectivity using nonlinear correlation. We focused on 3 zones defined by stereotactic-EEG ictal activity: the epileptogenic zone (EZ), the propagation zone (PZ), and the noninvolved zone. First, we compared within-zone and between-zones functional connectivity. Second, we analyzed the directionality of functional connectivity between these zones. Third, we measured the associations between functional connectivity measures and clinical variables, especially postsurgical prognosis. Our study confirms that functional connectivity differs according to the zone under investigation. We found: (1) a gradual decrease in the within-zone functional connectivity with higher values for EZ and PZ, and lower for noninvolved zones; (2) preferential coupling between structures of the EZ; (3) preferential coupling between EZ and PZ; and (4) poorer postsurgical outcome in patients with higher functional connectivity of non-involved zone (within-noninvolved zone, between noninvolved zone, and PZ functional connectivity). Our work suggests that, even during the interictal state, functional connectivity is reinforced within epileptic cortices (EZ and PZ) with a gradual organization. Moreover, larger functional connectivity alterations, %U https://journals.sagepub.com/doi/full/10.1177/1535759719843301