%0 Journal Article %T Fully Automated Pipetting Sorting System for Different Morphological Phenotypes of Zebrafish Embryos %A Christian Pylatiuk %A Helmut Breitwieser %A Marcel Vogt %A Marco Ferg %A Thomas Dickmeis %J SLAS TECHNOLOGY: Translating Life Sciences Innovation %@ 2472-6311 %D 2018 %R 10.1177/2472630317745780 %X Systems biology methods, such as transcriptomics and metabolomics, require large numbers of small model organisms, such as zebrafish embryos. Manual separation of mutant embryos from wild-type embryos is a tedious and time-consuming task that is prone to errors, especially if there are variable phenotypes of a mutant. Here we describe a zebrafish embryo sorting system with two cameras and image processing based on template-matching algorithms. In order to evaluate the system, zebrafish rx3 mutants that lack eyes due to a patterning defect in brain development were separated from their wild-type siblings. These mutants show glucocorticoid deficiency due to pituitary defects and serve as a model for human secondary adrenal insufficiencies. We show that the variable phenotypes of the mutant embryos can be safely distinguished from phenotypic wild-type zebrafish embryos and sorted from one petri dish into another petri dish or into a 96-well microtiter plate. On average, classification of a zebrafish embryo takes approximately 1 s, with a sensitivity and specificity of 87% to 95%, respectively. Other morphological phenotypes may be classified and sorted using similar techniques %K zebrafish embryo %K rx3 mutant %K automatic sorting %K morphological classification %K phenotype %U https://journals.sagepub.com/doi/full/10.1177/2472630317745780