%0 Journal Article %T The Self %A F.D. Nascimento %A I.L.S. Tersariol %A J.P. de Sousa %A K.C.U. Mugnol %A L.F. Barbosa-Martins %A R.G. Carvalho %A R.J.S. Torquato %A R.M. Puppin-Rontani %J Journal of Dental Research %@ 1544-0591 %D 2019 %R 10.1177/0022034518817351 %X The major goal in restorative dentistry is to develop a true regenerative approach that fully recovers hydroxyapatite crystals within the caries lesion. Recently, a rationally designed self-assembling peptide P11-4 (Ace-QQRFEWEFEQQ-NH2) has been developed to enhance remineralization on initial caries lesions, yet its applicability on dentin tissues remains unclear. Thus, the present study investigated the interaction of P11-4 with the organic dentin components as well as the effect of P11-4 on the proteolytic activity, mechanical properties of the bonding interface, and nanoleakage evaluation to artificial caries-affected dentin. Surface plasmon resonance and atomic force microscopy indicated that P11-4 binds to collagen type I fibers, increasing their width from 214 ¡À 4 nm to 308 ¡À 5 nm (P < 0.0001). P11-4 also increased the resistance of collagen type I fibers against the proteolytic activity of collagenases. The immediate treatment of artificial caries-affected dentin with P11-4 enhanced the microtensile bonding strength of the bonding interface (P < 0.0001), reaching values close to sound dentin and decreasing the proteolytic activity at the hybrid layer; however, such effects decreased after 6 mo of water storage (P < 0.05). In conclusion, P11-4 interacts with collagen type I, increasing the resistance of collagen fibers to proteolysis, and improves stability of the hybrid layer formed by artificial caries-affected dentin %K operative dentristry %K biomaterials %K protease inhibitors %K tissue engineering %K caries %U https://journals.sagepub.com/doi/full/10.1177/0022034518817351